Saturday, February 12, 2011

Ferrite Magnet

Ferrite Magnet, NDFeB Magnet, Alnico Magnet, Rubber Magnet & Sm-Co Magnets
Ferrite (magnet)




Ferrites are chemical compounds, ceramic with iron(III) oxide Fe2O3 as their principal components [1]. Many of them are magnetic materials and they are used to make permanent magnets, ferrite cores for transformers, and in various other applications.

Many ferrites are spinels with the formula AB2O4, where A and B represent various metal cations, usually including iron. Spinel ferrites usually adopt a crystal motif consisting of cubic close-packed (fcc) oxides (O2−) with A cations occupying one eighth of the tetrahedral holes and B cations occupying half of the octahedral holes—that is, the inverse spinel structure.

The magnetic material known as "ZnFe" has the formula ZnFe2O4, with Fe3+ occupying the octahedral sites and half of the tetrahedral sites. The remaining tetrahedral sites in this spinel are occupied by Zn2+.[2]

Some ferrites have hexagonal crystal structure, e.g. barium ferrite BaO:6Fe2O3 or BaFe12O19.

Contents [hide]
1 Properties
1.1 Soft ferrites
1.2 Hard ferrites
2 Production
3 Uses
4 See also
5 References
6 External links
7 Sources

[edit] Properties
Ferrites are usually non-conductive ferrimagnetic ceramic compounds derived from iron oxides such as hematite (Fe2O3) or magnetite (Fe3O4) as well as oxides of other metals. Ferrites are, like most other ceramics, hard and brittle. In terms of the magnetic properties, ferrites are often classified as "soft" and "hard" which refers to their low or high coercivity of their magnetism, respectively.

[edit] Soft ferrites
Ferrites that are used in transformer or electromagnetic cores contain nickel, zinc, and/or manganese compounds. They have a low coercivity and are called soft ferrites. The low coercivity means the material's magnetization can easily reverse direction without dissipating much energy (hysteresis losses), while the material's high resistivity prevents eddy currents in the core, another source of energy loss. Because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies (SMPS).

The most common soft ferrites are manganese-zinc (MnZn, with the formula MnaZn(1-a)Fe2O4) and nickel-zinc (NiZn, with the formula NiaZn(1-a)Fe2O4). NiZn ferrites exhibit higher resistivity than MnZn, and are therefore more suitable for frequencies above 1 MHz. MnZn have in comparison higher permeability and saturation induction.

[edit] Hard ferrites
In contrast, permanent ferrite magnets are made of hard ferrites, which have a high coercivity and high remanence after magnetization. These are composed of iron and barium or strontium oxides. In a magnetically saturated state they conduct magnetic flux well and have a high magnetic permeability. This enables these so-called ceramic magnets to store stronger magnetic fields than iron itself. They are cheap, and are widely used in household products such as refrigerator magnets. The maximum magnetic field B is about 0.35 tesla and the magnetic field strength H is about 30 to 160 kiloampere turns per meter (400 to 2000 oersteds).[3] The density of ferrite magnets is about 5g/cm3.

[edit] Production
Ferrites are produced by heating an intimate mixture of powdered precursors pressed into a mold. During the heating process, calcination of carbonates occurs:

MCO3 → MO + CO2
The oxides of barium and strontium are typically supplied as their carbonates, BaCO3 or SrCO3. The resulting mixture of oxides undergoes sintering. Sintering is a high temperature process similar to the firing of ceramic ware.

Afterwards, the cooled product is milled to particles smaller than 2 µm, small enough that each particle consists of a single magnetic domain. Next the powder is pressed into a shape, dried, and re-sintered. The shaping may be performed in an external magnetic field, in order to achieve a preferred orientation of the particles (anisotropy).

Small and geometrically easy shapes may be produced with dry pressing. However, in such a process small particles may agglomerate and lead to poorer magnetic properties compared to the wet pressing process. Direct calcination and sintering without re-milling is possible as well but leads to poor magnetic properties.

Electromagnets are pre-sintered as well (pre-reaction), milled and pressed. However, the sintering takes place in a specific atmosphere, for instance one with an oxygen shortage. The chemical composition and especially the structure vary strongly between the precursor and the sintered product.

To allow efficient stacking of product in the furnace during sintering and prevent parts sticking together, many manufacturers separate ware using ceramic powder separator sheets. These sheets are available in various materials such as alumina, zirconia and magnesia. They are also available in fine medium and coarse particle sizes. By matching the material and particle size to the ware being sintered, surface damage and contamination can be reduced while maximizing furnace loading.

[edit] Uses
Ferrite cores are used in electronic inductors, transformers, and electromagnets where the high electrical resistance of the ferrite leads to very low eddy current losses. They are commonly seen as a lump in a computer cable, called a ferrite bead, which helps to prevent high frequency electrical noise (radio frequency interference) from exiting or entering the equipment.

Early computer memories stored data in the residual magnetic fields of hard ferrite cores, which were assembled into arrays of core memory. Ferrite powders are used in the coatings of magnetic recording tapes. One such type of material is iron (III) oxide.

Ferrite particles are also used as a component of radar-absorbing materials or coatings used in stealth aircraft and in the absorption tiles lining the rooms used for electromagnetic compatibility measurements.

Most common radio magnets, including those used in loudspeakers, are ferrite magnets. Ferrite magnets have largely displaced Alnico magnets in these applications.

It is a common magnetic material for electromagnetic instrument pickups, because of price and relatively high output. However, such pickups lack certain sonic qualities found in other pickups, such as those that use Alnico alloys or more sophisticated magnets

Information Source: http://en.wikipedia.org/wiki/Ferrite_(magnet)

NDFeB Magnet

Ferrite Magnet, NDFeB Magnet, Alnico Magnet, Rubber Magnet & Sm-Co Magnets
Neodymium magnet



A neodymium magnet (also known as NdFeB, NIB, or Neo magnet), a type of rare-earth magnet, is a permanent magnet made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. This material is currently the strongest known type of permanent magnet.

Contents [hide]
1 Description
2 History and manufacturing techniques
3 Production
4 Properties
4.1 Magnetic properties
4.2 Physical and mechanical properties
5 Hazards
6 Applications
7 See also
8 References
9 Further reading
10 External links

[edit] Description
The tetragonal Nd2Fe14B crystal structure has exceptionally high uniaxial magnetocrystalline anisotropy (HA~7 teslas). This gives the compound the potential to have high coercivity (i.e., resistance to being demagnetized). The compound also has a high saturation magnetization (Js ~1.6 T or 16 kG). Therefore, as the maximum energy density is proportional to Js2 this magnetic phase has the potential for storing large amounts of magnetic energy (BHmax ~ 512 kJ/m3 or 64 MG·Oe), considerably more than samarium cobalt (SmCo) magnets, which were the first type of rare earth magnet to be commercialized [1]. In practice, the magnetic properties of neodymium magnets depend on the alloy composition, microstructure, and manufacturing technique employed.

[edit] History and manufacturing techniques
In 1982, General Motors Corporation and Sumitomo Special Metals discovered the Nd2Fe14B compound. The effort was principally driven by the high material cost of the SmCo permanent magnets, which had been developed earlier. General Motors focused on the development of melt-spun nanocrystalline Nd2Fe14B magnets, while Sumitomo developed full density sintered Nd2Fe14B magnets. General Motors Corporation commercialized its inventions of isotropic Neo powder, bonded Neo magnets and the related production processes by founding Magnequench in 1986. Magnequench is now part of the Neo Materials Technology Inc. and supplies melt spun Nd2Fe14B powder to bonded magnet manufacturers. The Sumitomo facility has become part of the Hitachi corporation and currently manufactures and licenses other companies to produce sintered Nd2Fe14B magnets.

Sintered Nd2Fe14B tends to be vulnerable to corrosion. In particular, corrosion along grain boundaries may cause deterioration of a sintered magnet. This problem is addressed in many commercial products by providing a protective coating. Nickel plating or two layered copper nickel plating is used as a standard method, although plating with other metals or polymer and lacquer protective coatings are also in use.[1]

[edit] Production
There are two principal neodymium magnet manufacturing routes:

1.The classical powder metallurgy or sintered magnet process
2.The rapid solidification or bonded magnet process
Sintered Neo magnets are prepared by pulverizing an ingot precursor and liquid-phase sintering the magnetically aligned powder into dense blocks which are then heat treated, cut to shape, surface treated and magnetized. Currently, between 45,000 and 50,000 tons of sintered neodymium magnets are produced each year, mainly from China and Japan.


Bonded Neo magnets are prepared by melt spinning a thin ribbon of the Nd-Fe-B alloy. The ribbon contains randomly oriented Nd2Fe14B nano-scale grains. This ribbon is then pulverized into particles, mixed with a polymer and either compression or injection molded into bonded magnets. Bonded magnets offer less flux than sintered magnets but can be net-shape formed into intricately shaped parts and do not suffer significant eddy current losses. There are approximately 5,500 tons of Neo bonded magnets produced each year. In addition, it is possible to hot press the melt spun nanocrystalline particles into fully dense isotropic magnets, and then upset-forge/back-extrude these into high energy anisotropic magnets.

[edit] Properties
[edit] Magnetic properties
Some important properties used to compare permanent magnets are: remanence (Mr), which measures the strength of the magnetic field; coercivity (Hci), the material's resistance to becoming demagnetized; energy product (BHmax), the density of magnetic energy; and Curie temperature (TC), the temperature at which the material loses its magnetism. Neodymium magnets have higher remanence, much higher coercivity and energy product, but often lower Curie temperature than other types. Neodymium is alloyed with terbium and dysprosium in order to preserve its magnetic properties at high temperatures.[2] The table below compares the magnetic performance of neodymium magnets with other types of permanent magnets.

Magnet Mr (T) Hci (kA/m) BHmax (kJ/m3) TC (°C)
Nd2Fe14B (sintered) 1.0–1.4 750–2000 200–440 310–400
Nd2Fe14B (bonded) 0.6–0.7 600–1200 60–100 310–400
SmCo5 (sintered) 0.8–1.1 600–2000 120–200 720
Sm(Co, Fe, Cu, Zr)7 (sintered) 0.9–1.15 450–1300 150–240 800
Alnico (sintered) 0.6–1.4 275 10–88 700–860
Sr-ferrite (sintered) 0.2–0.4 100–300 10–40 450

[edit] Physical and mechanical properties
Comparison of physical properties of sintered neodymium and Sm-Co magnets[3] Property Neodymium Sm-Co
Remanence (T) 1–1.3 0.82–1.16
Coercivity (MA/m) 0.875–1.99 0.493–1.59
Permeability 1.05 1.05
Temperature coefficient of remanence (%/K) –0.12 –0.03
Temperature coefficient of coercivity (%/K) –0.55..–0.65 –0.15..–0.30
Curie temperature (°C) 320 800
Density (g/cm3) 7.3–7.5 8.2–8.4
CTE, magnetizing direction (1/K) 5.2×10–6 5.2×10–6
CTE, normal to magnetizing direction (1/K) –0.8×10–6 11×10–6
Flexural strength (N/mm2) 250 150
Compressive strength (N/mm2) 1100 800
Tensile strength (N/mm2) 75 35
Vickers hardness (HV) 550–650 500–550
Electrical resistivity (Ω·cm) (110–170)×10–6 86×10–6

[edit] Hazards
The greater force exerted by rare earth magnets creates hazards that are not seen with other types of magnet. Neodymium magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets, or a magnet and a metal surface, even causing broken bones.[4] Magnets allowed to get too near each other can strike each other with enough force to chip and shatter the brittle material, and the flying chips can cause injuries. There have even been cases where young children who have swallowed several magnets have had a fold of the digestive tract pinched between the magnets, causing injury or death.[5] The stronger magnetic fields can be hazardous also, and can erase magnetic media such as floppy disks and credit cards, and magnetize the shadow masks of CRT type monitors at a significant distance.

[edit] Applications
Ring Magnets
Hard Disk Drive


Neodymium magnets have replaced Alnico and ferrite magnets in many of the myriad applications in modern technology where strong permanent magnets are required, because their greater strength allows the use of smaller, lighter magnets. Some examples are

head actuators for computer hard disks
magnetic resonance imaging (MRI)
magnetic guitar pickups
loudspeakers and headphones
magnetic bearings and couplings
permanent magnet motors:
cordless tools
servo motors
lifting and compressor motors
synchronous motors
spindle and stepper motors
electrical power steering
drive motors for hybrid and electric vehicles. The electric motors of each Toyota Prius require 1 kilogram (2.2 pounds) of neodymium.[2]
actuators
In addition, the greater strength of neodymium magnets has inspired a few new applications in areas where magnets weren't used before, such as magnetic jewelry clasps and children's magnetic building sets.


Source: Source: www.en.wikipedia.org/wiki/Neodymium_magnet
Sign up for PayPal and start accepting credit card payments instantly.